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Abstract 

Concentration dependence of activity a(c) in liquid A u - G d  alloys was measured at 1623 K by the Knudsen effusion method 
and reveals strong ordering effects. The percolation theory is proposed for analysis and calculation of activity data using 
concentration correlation function Scc(0) for several metallic solutions with chemical short range ordering (CSRO). The basic 
equations take into account the concentration difference factor c - c  o where c o is the mean concentration at which the 
percolation threshold and maximum CSRO exist. The theoretical calculations of a(c) from given S,:,(0) and vice versa are in 
satisfactory agreement with experimental data. The percolation theory was shown to be suitable for correct interpretation and 
prediction of activity and S.c(0 ) data in ordered melts. 
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1. Introduction 

In a previous publication [1] it was shown that 
percolation theory may be successfully applied for the 
description of thermodynamic properties of liquid 
alloys possessing chemical short-range ordering 
(CSRO). The important results from Ref. [1] are the 
determination of the formulae for the concentration 
correlati:m function Sc~(0 ) of binary melts proceeding 
from the schematic dependence of activity a(c) for two 
regions of concentration divided by the percolation 
threshold. The activity was proposed to be treated as 
the analogy with an infinite cluster formation prob- 
ability, the critical index fl being directly connected 
with mean concentration c o at which the percolation 
threshold and the maximal CSRO exists. Computation 
of/3 from c o showed a good agreement with theoret- 
ical results of framework [2]. 

The purpose of the present paper is to give a 
detailed analysis of the concentration dependence of 
activity and Scc(O) using the percolation theory ap- 
proach for liquid alloys possessing CSRO. A further 
problem exists in determination of the mathematical 
relations for computation of activity a(c) from known 
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concentration dependence of Scc(0 ), and vice versa, 
according to the basic equations [3] 

1 - c  
S"c(O)- (alna) (1) 

\ OC / p , T  

reflecting the principal relation between thermody- 
namic and microscopic properties of liquid alloys, 
because Scc(O ) may be determined from structural 
measurements. We shall assume that the deviations 
of both a(c) and Scc(O ) from ideality when d~(c)= c 
(Raoult's law) and sic~ = c ( 1 -  c) depend on the con- 
centration difference factor I c -  c01 thus allowing us 
to derive the formulae for calculation of a(c) and 
Scc(0 ) for several binary melts, including the newly 
studied A u - G d  system, given in Section 2 (c corre- 
sponds to the second component). In Sections 3, 4, 
5 and 6 we present the calculations of a(c) and 
Scc(O ) derived from percolation theory (branching 
network, infinite cluster model) for liquid alloys 
with CSRO and phase separation tendency reflect- 
ing the different types of component interactions in 
metallic solutions. In Section 7 a short discussion of 
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results and a comparison with ideal associated solu- 
tion (IAS) model is made. 

2. Activity measurements in liquid Au-Gd alloys 

The Knudsen effusion measurement  technique and 
the method of activity calculations for liquid alloys 
containing rare earth metals have been described 
elsewhere [4]. The thermodynamic activity was mea- 
sured at 1623 K over a wide range of composition for 
liquid A u - G d  alloys except the heterogeneous field 
around the intermetallic compound AuGd [5]. The 
activity of gold was calculated from the formula 

VAu 
aAu --  0 

VAu 

o and are the evaporation rates of pure where VAu VAu 
gold and the alloy respectively, which can be de- 
termined from the equation 

m 
v =  Kst  

where m is the mass of effused metal, t is the time of 
exposure, s is the effusion orifice area and K is the 
Clausing factor. The X-ray fluorescent analysis of the 
condensate obtained after the evaporation of the 
alloys did not show the presence of gadolinium; 
therefore,  gold was supposed to be the only volatile 
component  in the melts. Activity of gadolinium was 
calculated by integration of the G ibbs -Duhem equa- 
tion [4]. Partial molar Gibbs energies of formation 
were computed using the activity data (AG; = R T  In a;) 
and are listed in Table 1. These data, as well as the 
thermochemical measurements for liquid A u - G d  al- 
loys [5], show the strong chemical ordering in the 
studied melts. 

3. Activity calculation using the branching model 

As shown in Ref. [1], the activity of a component  in 
a melt may be treated analogously to the one com- 

Table 1 
Thermodynamic  propert ies of liquid A u - G d  alloys at 1623 K 

CAu aAu •Gd --AGAu --AGAu 
(kJ mol ' )  (kJ mol ~) 

0.981 0.951 0 0.7 319.0 
0.968 0.880 0 1.7 250.1 
0.907 0.683 0 5.2 195.7 
0.869 0.510 0 9.1 163.6 
0.828 0.340 0 14.6 132.3 
0.763 0.178 0.001 23.3 97.3 
0.679 0.079 0.006 34.3 69.0 
0.3 0.004 0.596 73.7 7.0 
0.2 0.0035 0.757 76.1 3.7 
0.1 0.0030 0.890 79.0 1.6 

ponent  cluster formation probability. Therefore,  the 
determination of analytical dependence of a(c) reduces 
to the branching model [6] in connection with the 
percolation site problem. Following Ref. [6], we 
consider a tree-like network having free q channels, 
where q is connected with c o so that c 0 = 1/q. In 
compound forming melts, negative deviations of a(c) 
from ideality are due to the destruction of pure 
component  infinite cluster (blocking effects in the 
network) when the second component  is added. This 
deviation, c -  a, is proportional to the blocking prob- 
ability (1 - a )  q for q channels. So, one can write 

c - a = c(1 - a) q (2) 

The multiplier c in right hand side follows from the 
standard condition a(0) = 0. For real melts when q > 1 
there are the non-trivial solutions of Eq. (2) at c o < c ~< 
1, except the case a = 0 for all c, which, however, is 
suitable at 0 ~< c ~< c 0. Taking into account these solu- 
tions for both concentration regions, one can obtain 
the total activity curve. We calculated activities using 
Eq. (2) for liquid A g - N d  and A u - G d  alloys, the 
values of q were taken from experimental c 0 = 0.33 
[4] and c o = 0.40 respectively. The results of calcula- 
tions are compared with the experimental data in Figs. 
1 and 2. Further analysis of Eq. (2) leads to the 
hypothetical network with q ~ ~. In this case (1 - a )  q 
tends to zero, and, hence, a(c)= c for all c (ideal 
solution). To explain this result one can imagine that 
there will be a sufficient quantity of branches at q ~ 
to form an infinite cluster regardless of blocking 
effects due to the CSRO. At q = 1 from Eq. (2) it 
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Fig. 1. Activities for liquid A g - N d  alloys: - -  
(2); ---, experimental  data at 1363 K. 

, calculated from Eq. 
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Fig. 2. Activities for liquid Au-Gd alloys: - - ,  calculated from Eq. 
(2); ---, experimental data at 1363 K. Data for 0.41 < c,; d < 0.6 are 
extrapolated for undercooled liquid alloys. 

follows 1:hat a(c)= 0 for all c, so the thermodynamic 
activity in the linear chain is equal to zero; this is in 
line with general properties of fully localized one- 
dimensional systems [7]. 

4. Activity calculation from Scc(0 ) data 

In Ref. [1] the deviation of Scc(0 ) from the ideal 
value c(] - c) in ordered liquid alloys was shown to be 
proportional  to the concentration difference factor 
[C-Col. For c > c o let 

s,.c(0) = c(1 - c)(c - co) (3) 

To determine the activity from So<(0 ) data we use 
Eq. (1) in the form: 

1 - c  
l n a ( c ) = f ~ d c = f c ( c a - C _ c o ,  

After  the integration one obtains (a = a(c)): 

In a = A In c + B ln(c - co) + const 

where the parameters A = - B  = 1~co, const = - B  In 
(1 - c o )  were determined from the normalization con- 
dition all)  = 1, and we may write 

[ c - c o  ]'/<,, 
a = c(-1 - ~ , )  

For the concentration region c 0 > c Eq. (3) may be 
written an the form 

1.0 a i i i \ i 
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Fig. 3. Activity of aluminum for liquid AI-Au alloys: - - . ,  calcu- 
lated from Eqs. (5) and (6); ©, experimental data at 1400 K. 

s<<(o) = c ( 1  - c)(co - c) ( 4 )  

from which for the activity we obtain 

a = [c(c0 - c)]"<<, 

The unified expression for computation of activity 
over the total concentration region is 

f l  C-Co 1 ''`<' 
a __/Lc(~ ~ )  J c 0 < c ~ < l  (5) 

(61 
[ [ c ( c 0 -  ~)1 ' ' %  0 ~ c < c , ,  

Eqs. (5) and (6) describe the typical behavior of the 
a(c)-curve. Analyzing Eq. (6) one can see that a(c) is 
too small in comparison with the measured activity 
data of liquid-compound forming alloys for c ~< c < c 0. 
Using Eqs. (5) and (6) we calculated the activities in 
liquid A1-Au and H g - N a  alloys. According to the 
experimental data we used, c 0 = 0.5 for the A I - A u  
system [8] and c o = 0.33 for the H g - N a  system [9], 
the last one corresponding to liquid intermetallic 
Hg2Na [10]. Both results are given in Figs. 3 and 4 
and show good agreement with experimental results. 
We also calculated S,.(O) for the H g - N a  system using 
Eqs. (3) and (4) and obtained the excellent agreement 
with thermodynamic calculations of this function (re- 
ported in Ref. [10]). 

5. Activity in melts with intermediate ordering 

We consider the liquid alloy with CSRO for which 
the activity values are only very small near c = 0, as 
one can see in Figs. 5 and 6(a). The model interpreta- 
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Fig. 4. Activity of sodium for liquid Hg-Na alloys: , calculated 
from Eq. (8); O, experimental data at 648 K. 
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Fig. 5. Activity of nickel for liquid Ge-Ni alloys: - - ,  calculated 
from Eqs. (5) and (6); O, drawn from experimental data at 1623 K. 

tion of such dependencies seems to be based on the 
correlation function F(R), which takes account of the 
infinite cluster formation and relaxation at c ~ 0 when 
the only small clusters exist [7]: 

F(R) = F~ + R-1 exp - ~ (7) 

where R is the reduced interatomic distance and 8is 
the correlation radius. Analogously to Eq. (7) for the 
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Fig. 6. (a) , activity of copper for liquid Ge-Cu alloys calculated 
from Eq. (8); O, experimental data at 1500 K; (b) - - ,  correlation 
function S,.,(O) for liquid Ge-Cu alloys calculated from Eq. (9). 

evaluation of c-dependence of the activity coefficient 
(3' = a /c )  using the parameters Co, 8, y0 (limiting value 
at c = 0) and the requirement y(1)= 1 one may pro- 
pose the equation 

7 ( c ) = 7 ° ( 1 - c ) + [ 1  + e x p [ T )  ] / c ° - c ' x  -~ (8) 

Here  8 is given in terms of concentration. The 
condition 9,(1) = 1 holds when the term exp[(c 0 - c)/6] 
tends to zero at c ~  1 if correlation radius 8 (con- 
centration limit of ordering in an alloy) is sufficiently 
small. The calculations of activity from Eq. (8) were 
carried out for liquid G e - C u  alloys (associate Cu3Ge, 
c o =0.75, 8=0 .08 ,  7 ° = 0 . 6  [11]). We also calculated 
the activity of Ni in liquid G e - N i  alloys using c o = 0.7 
(average value for Ni3Ge and NisGe 3 compounds), 
8 = 0.05, y o = 0.12 [12]. The results of calculation (see 
Figs. 5 and 6(a)) are in proper  agreement with experi- 
ments, as well as the data on G e - C u  liquid alloys. The 
knowledge of analytical c-dependence of activity al- 
lows as to obtain the formula for calculation of Scc(O ) 
using Eqs. (1) and (8): 

S~c(O)=c(1-c) 
A[y°(1 - c ) A  + 1] 

1 + y°(1 - 2c)A 2 +(A - 1)(1 + c8 -1) 

(9) 
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where A =1 + e x p  [ ( c o - c ) / 8  ]. The computation of 
S~(0) for G e - C u  melts (Fig. 6(b)) indicates that Scc(O ) 
values are rather small in the neighborhood of the 
Cu3Ge compound and rather large in Ge-rich compo- 
sition region, where, by the way, a tendency toward 
self-association of liquid germanium could occur [13]. 

6.  P h a s e  s e p a r a t i o n  a n d  S¢~(0) c o n c e n t r a t i o n  

d e p e n d e n c e  

A number of liquid alloys indicate the complicated 
character of the concentration dependence of Scc(0 ) 
possessing the minimum in associate formation region 
at c 0 as well as the phase separation tendency evi- 
denced by the peak at certain concentrations, say c~ 
[14]. The calculation of Scc(0 ) from activity data for 
the 0<c:~ < %  region using Eqs. (1) and (6) leads to 
the formula 

o l  - c)(c o -  c) 
S..(O) = (10) 

% - 2c 

Hence. if the activity follows Eq. (6) the break on 
the S.,(0) vs. c curve must emerge at c ~ = C o / 2 .  
However. Eq. (3) for S..(0) shows that in region c o < 
c < 1 such an effect cannot take place. To obtain the 
unified formula for S~c(O ) over the total region we must 
take account that Sc~(0 ) ~> 0, so that 

C -- C o 
Scc(0 ) = c(1 - c) 2c - % (11) 

It is of interest to apply this equation, for computa- 
tion of S,,:(O) and activity, in the liquid T1-Te alloys in 
which there is the liquid associate T12Te and a mis- 
cibility gap in the Tl-rich region according to the phase 
diagram [15,16]. The formula for activity in the region 
c 0 < c < 1 follows from Eqs. (1) and (11): 

c(c - Co) (12) 
a(c) - 1 - c o 

For the estimation of activity over the total compo- 
sition region we must introduce an additional term 
into Eq. (12), which is analytical at c = Co, as has been 
made in Eq. (8). For detailed reconstruction of the 
activity curve it is necessary to take account of its 
behavior at small c, which is conditioned by the 
normalizztion constant y 0 =  y(O), so that 

clc - Col (13) 
a (c )=  y ° c ( 1 -  c) + 1 -  c ~  

The results of calculations of Scc(0 ) and activity of 
tellurium from Eqs. (11) and (13) for T1-Te melts are 
given in Figs. 7 and 8 and show rather good agreement 
with experimental data for S,,c(0 ) [14] and a(c) [16]. In 
calculations we used c o = 0.33 [16] in Eq. (11); o ')/Te w a s  
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Fig. 7. Correlation function S , (0)  for liquid T1-Te alloys: O, 
calculated from Eq. (11); - - ,  drawn from experimental data. 

a 1-0 . . . .  C J  

0.8 

0.6 

0.4 

0 . 0 "  ~ , , , 

0.0 0.2 0.4 0.6 0.8 CT c 1.0 

Fig. 8. Activity of tellurium for liquid T1-Te alloys: ---, calculated 
from Eq. ( 1 3 ) ; - - ~ ,  drawn from experimental data at 1181 K. 

computed to be 0.42 from data of Ref. [16]. It should 
be noted that in the Tl-rich region the behavior of the 
calculated activity curve seems to predict a phase 
separation tendency, which, however, does not co- 
incide with activity data at 1811 K [16]. The differ- 
ences between calculated and experimental activity 
curves may be caused by fluctuation probability scat- 
tering, which arises sharply at c = c~ (Fig. 7). Alter- 
natively, in the CSRO concentration region around 
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Tl2Te, the small Scc(O ) does not make the agreement 
between both branches of the activity curve worse 
(Fig. 8). 

7. Discussion 

The calculation of activity and correlation function 
Scc(O ) demonstrate, in general, the successful attempt 
of the application of percolation theory for typical 
liquid alloys with strong CSRO, intermediate ordering 
and phase separation tendency. All the calculated 
concentration dependencies of a(c) and Scc(0 ) reflect 
the main features of the experimental data sets; 
however, the results for aAg (Fig. 1) and aAu (Fig. 2) are 
unsatisfactory. This weak point of the theory is due to 
the only single parameter limitation in calculations 
(Eq. (2)). This seems to be insufficient even though 
that it gives 7 ° = 0, while for real melts this parameter 
is non-trivial and serves as a standard point. Since the 
adjustable parameter 6 must be introduced in several 
cases to hold the shape of the a(c) curve, the three 
values (Co, 70 and 6) in general provide the correct 
results. All these parameters may be determined or 
estimated from thermodynamic, structural and phase 
equilibrium data. 

The successful application of the percolation prob- 
lems to liquid alloys allows us to make certain consid- 
erations about the structure of metallic melts. Using 
the concentration dependence of activity (Figs. 1-3) 
one can propose the coherent cluster formation at 
c > co, the scaling transformation around c o when the 
infinite cluster decomposes into finite size blocks, and 
a solution of small clusters (associates) at 0 < c < c 0. 
This hypothesis of cluster formation is in formal 
agreement with the idea of microinhomogeneity of 
liquid alloys in frames of the well-known IAS model 
for the activity [17]. Furthermore, drawing the anal- 
ogy with the IAS model, one can choose the corre- 
sponding pairs of principal values: 

(1) percolation threshold~ mean CSRO point; 
(2) probability of a cluster formation ~ activity, 

a(c); 
(3) blocked atoms fraction ~ associates fraction, 

~c). 
Using the notation suited to the IAS model, we may 

write the equation (for an arbitrary associate A a B  b 
c o = a / (a  + b)) 

which has been derived by Shklovski and Efros [18] in 
terms of percolation theory. Earlier the IAS model 
was successfully applied for numerous binary liquid 
alloys, included the above studied Ag-Nd [4], Ge-Cu 
[11] and Ge-Ni  [12], using percolation theory. The 
detailed inspections of theoretical activity curves [17] 
show that the IAS model could reproduce the ac- 
tivities, obtained from percolation theory (Eqs. (2), (5) 
and (6)), even for very sharp bends, if the IAS model 
parameters reach the critical limits. 

In this paper we have shown an equivalence be- 
tween certain networks with the percolation threshold 
and liquid alloy with CSRO for interpreting concen- 
tration dependencies of activity and concentration 
correlation function. The percolation model, which 
does not take into account the electronic structure of 
the material, may be used to obtain analytical results 
for calculation of thermodynamic functions and for 
estimation of the structure of liquid alloys. 
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