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Abstract

Concentration dependence of activity a(c) in liquid Au-Gd alloys was measured at 1623 K by the Knudsen effusion method
and reveals strong ordering effects. The percolation theory is proposed for analysis and calculation of activity data using
concentration correlation function S, _(0) for several metallic solutions with chemical short range ordering (CSRO). The basic
equations take into account the concentration difference factor ¢ — ¢, where ¢, is the mean concentration at which the
percolaticn threshold and maximum CSRO exist. The theoretical calculations of a(c) from given S_(0) and vice versa are in
satisfactory agreement with experimental data. The percolation theory was shown to be suitable for correct interpretation and

prediction of activity and S, .(0) data in ordered melts.
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1. Introduction

In a previous publication [1] it was shown that
percolation theory may be successfully applied for the
description of thermodynamic properties of liquid
alloys possessing chemical short-range ordering
(CSRO). The important results from Ref. [1] are the
determination of the formulae for the concentration
correlation function S_(0) of binary melts proceeding
from the schematic dependence of activity a(c) for two
regions of concentration divided by the percolation
threshold. The activity was proposed to be treated as
the analogy with an infinite cluster formation prob-
ability, the critical index B being directly connected
with mean concentration ¢, at which the percolation
threshold and the maximal CSRO exists. Computation
of B from ¢, showed a good agreement with theoret-
ical results of framework [2].

The purpose of the present paper is to give a
detailed analysis of the concentration dependence of
activity and S _(0) using the percolation theory ap-
proach for liquid alloys possessing CSRO. A further
problem exists in determination of the mathematical
relations for computation of activity a(c) from known
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concentration dependence of S_(0), and vice versa,
according to the basic equations [3]

—alln% M
( ac )p. T

reflecting the principal relation between thermody-
namic and microscopic properties of liquid alloys,
because S, (0) may be determined from structural
measurements. We shall assume that the deviations
of both a(c) and S, (0) from ideality when a‘(cy=c
(Raoult’s law) and Si‘i =c¢(1 —¢) depend on the con-
centration difference factor Ic —¢,! thus allowing us
to derive the formulae for calculation of a(c) and
S..(0) for several binary melts, including the newly
studied Au-Gd system, given in Section 2 (¢ corre-
sponds to the second component). In Sections 3, 4,
S and 6 we present the calculations of a(c) and
S.(0) derived from percolation theory (branching
network, infinite cluster model) for liquid alloys
with CSRO and phase separation tendency reflect-
ing the different types of component interactions in
metallic solutions. In Section 7 a short discussion of

S.0) =
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results and a comparison with ideal associated solu-
tion (IAS) model is made.

2. Activity measurements in liquid Au-Gd alloys

The Knudsen effusion measurement technique and
the method of activity calculations for liquid alloys
containing rare earth metals have been described
elsewhere [4]. The thermodynamic activity was mea-
sured at 1623 K over a wide range of composition for
liquid Au-Gd alloys except the heterogeneous field
around the intermetallic compound AuGd [5]. The
activity of gold was calculated from the formula

_ VAu
Ary = 0
VAu
where v, and v, are the evaporation rates of pure
gold and the alloy respectively, which can be de-
termined from the equation
m

v=—

where m is the mass of effused metal, ¢ is the time of
exposure, s is the effusion orifice area and K is the
Clausing factor. The X-ray fluorescent analysis of the
condensate obtained after the evaporation of the
alloys did not show the presence of gadolinium;
therefore, gold was supposed to be the only volatile
component in the melts. Activity of gadolinium was
calculated by integration of the Gibbs—-Duhem equa-
tion [4]. Partial molar Gibbs energies of formation
were computed using the activity data (AG, = RT In a,)
and are listed in Table 1. These data, as well as the
thermochemical measurements for liquid Au-Gd al-
loys [5], show the strong chemical ordering in the
studied melts.

3. Activity calculation using the branching model

As shown in Ref. [1], the activity of a component in
a melt may be treated analogously to the one com-

Table 1

Thermodynamic properties of liquid Au~Gd alloys at 1623 K
Cau A Agy -AG,, -AG,,

(kJ mol™") (kJ mol™")

0.981 0.951 0 0.7 319.0
0.968 0.880 0 1.7 250.1
0.907 0.683 0 5.2 195.7
0.869 0.510 0 9.1 163.6
0.828 0.340 0 14.6 132.3
0.763 0.178 0.001 233 97.3
0.679 0.079 0.006 34.3 69.0
0.3 0.004 0.596 73.7 7.0
0.2 0.0035 0.757 76.1 3.7
0.1 0.0030 0.890 79.0 1.6

ponent cluster formation probability. Therefore, the
determination of analytical dependence of a(c) reduces
to the branching model [6] in connection with the
percolation site problem. Following Ref. [6], we
consider a tree-like network having free ¢ channels,
where g is connected with ¢, so that ¢,=1/q. In
compound forming melts, negative deviations of a(c)
from ideality are due to the destruction of pure
component infinite cluster (blocking effects in the
network) when the second component is added. This
deviation, ¢ — a, is proportional to the blocking prob-
ability (1 — a)? for g channels. So, one can write

c—a=c(l—a)? (2)

The multiplier ¢ in right hand side follows from the
standard condition a(0) = 0. For real melts when g > 1
there are the non-trivial solutions of Eq. (2) at ¢, <c¢ =<
1, except the case @ =0 for all ¢, which, however, is
suitable at 0 <c¢ =c,. Taking into account these solu-
tions for both concentration regions, one can obtain
the total activity curve. We calculated activities using
Eq. (2) for liquid Ag-Nd and Au-Gd alloys, the
values of g were taken from experimental c¢,=0.33
[4] and ¢, = 0.40 respectively. The results of calcula-
tions are compared with the experimental data in Figs.
1 and 2. Further analysis of Eq. (2) leads to the
hypothetical network with g —oc. In this case (1 — a)¢
tends to zero, and, hence, a(c)=c for ail ¢ (ideal
solution). To explain this result one can imagine that
there will be a sufficient quantity of branches at g — =
to form an infinite cluster regardless of blocking
effects due to the CSRO. At ¢g=1 from Eq. (2) it
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Fig. 1. Activities for liquid Ag-Nd alloys: —, calculated from Eq.
(2); ---, experimental data at 1363 K.
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Fig. 2. Activities for liquid Au-Gd alloys: ——, calculated from Eq.
(2); ---, experimental data at 1363 K. Data for 0.41 <c, < 0.6 are
extrapolated for undercooled liquid alloys.

follows rthat a(c) =0 for all ¢, so the thermodynamic
activity in the linear chain is equal to zero; this is in
line with general properties of fully localized one-
dimensional systems {7].

4. Activity calculation from S_ (0) data

In Ref. [1] the deviation of §_(0) from the ideal
value ¢(1 — ¢) in ordered liquid alloys was shown to be
proportional to the concentration difference factor
lc —¢,l. For ¢ > ¢, let
Se®) =c(l = o)c—¢) 3

cc

To determine the activity from S (0) data we use
Eq. (1) in the form:

[l=c _J dc
Ina(c) = S,-C(O)dc_ o

€ —¢p)
After the integration one obtains (a = a(c)):
Ina=Alnc+ Bln(c — ¢,) + const

where the parameters A= —B=1/c,, const=—B In
(1 = ¢,} were determined from the normalization con-
dition a(l) = 1, and we may write

‘[ c—c, ]1/(-‘,
a= c(l —cy)

For the concentration region c,>c¢ Eq. (3) may be
written in the form
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Fig. 3. Activity of aluminum for liquid Al-Au alloys: ——, calcu-
lated from Eqgs. (5) and (6); O, experimental data at 1400 K.

SOy =c(l —c)(co— ) @
from which for the activity we obtain
a=[c(c, )]

The unified expression for computation of activity
over the total concentration region is

C_CO /ey
a=fle=cyl ==l )
6
[c(cy — C)]”CO O0=c<c, ()

Egs. (5) and (6) describe the typical behavior of the
a(c)-curve. Analyzing Eq. (6) one can see that a(c) is
too small in comparison with the measured activity
data of liquid-compound forming alloys for ¢ <¢ <c,,.
Using Eqgs. (5) and (6) we calculated the activities in
liquid Al-Au and Hg-Na alloys. According to the
experimental data we used, ¢, =0.5 for the Al-Au
system [8] and ¢, = 0.33 for the Hg—Na system [9],
the last one corresponding to liquid intermetallic
Hg,Na [10]. Both results are given in Figs. 3 and 4
and show good agreement with experimental results.
We also calculated S, (0) for the Hg-Na system using
Egs. (3) and (4) and obtained the excellent agreement
with thermodynamic calculations of this function (re-
ported in Ref. [10]).

5. Activity in melts with intermediate ordering
We consider the liquid alloy with CSRO for which

the activity values are only very small near ¢ =0, as
one can see in Figs. 5 and 6(a). The model interpreta-
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Fig. 4. Activity of sodium for liquid Hg—Na alloys: ——, calculated
from Eq. (8); O, experimental data at 648 K.
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Fig. 5. Activity of nickel for liquid Ge-Ni alloys: ——, calculated

from Egs. (5) and (6); O, drawn from experimental data at 1623 K.

tion of such dependencies seems to be based on the
correlation function ITR), which takes account of the
infinite cluster formation and relaxation at ¢ — 0 when
the only small clusters exist [7]:

nR)=1+R " exp( - %) )

where R is the reduced interatomic distance and §is
the correlation radius. Analogously to Eq. (7) for the
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Fig. 6. (a) ——, activity of copper for liquid Ge—Cu alloys calculated
from Eq. (8); O, experimental data at 1500 K; (b) ——, correlation
function S_(0) for liquid Ge~Cu alloys calculated from Eq. (9).

evaluation of c-dependence of the activity coefficient
(y = a/c) using the parameters c,, 8, y" (limiting value
at ¢ =0) and the requirement (1) =1 one may pro-
pose the equation

=7 -+ | 1+ exp(57) | (8)

Here & is given in terms of concentration. The
condition ¥{1) =1 holds when the term exp[(c, — ¢)/8]
tends to zero at c—1 if correlation radius & (con-
centration limit of ordering in an alloy) is sufficiently
small. The calculations of activity from Eq. (8) were
carried out for liquid Ge—Cu alloys (associate Cu,Ge,
¢, =075, §=0.08, y*=0.6 [11]). We also calculated
the activity of Ni in liquid Ge-Ni alloys using ¢, = 0.7
(average value for Ni;Ge and Ni;Ge, compounds),
8=0.05, y"=0.12 [12]. The results of calculation (see
Figs. 5 and 6(a)) are in proper agreement with experi-
ments, as well as the data on Ge—Cu liquid alloys. The
knowledge of analytical c-dependence of activity al-
lows as to obtain the formula for calculation of S, (0)
using Egs. (1) and (8):

A[y°(1-0)A +1]
1+ 9% —20)A +(A—1)(1+c67")
)

S.0)=c(l—¢)
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where A =1+exp [(c, —¢)/8]. The computation of
S.(0) for Ge-Cu melts (Fig. 6(b)) indicates that §__(0)
values are rather small in the neighborhood of the
Cu,Ge compound and rather large in Ge-rich compo-
sition region, where, by the way, a tendency toward
self-association of liquid germanium could occur [13].

6. Phase separation and S_(0) concentration
dependence

A number of liquid alloys indicate the complicated
character of the concentration dependence of §_.(0)
possessing the minimum in associate formation region
at ¢, as well as the phase separation tendency evi-
denced by the peak at certain concentrations, say c,,
[14]. The calculation of S,..(0) from activity data for
the 0 <c. <c, region using Eqgs. (1) and (6) leads to
the formula

a1l =o)ey—¢)
S('('(O) - C‘) - 2C

(10)

Hence, if the activity follows Eq. (6) the break on
the S_(0) vs. ¢ curve must emerge at c,=c,/2.
However. Eq. (3) for S_(0) shows that in region ¢, <
¢ <1 such an effect cannot take place. To obtain the
unified formula for S, (0) over the total region we must
take account that S_(0)=0, so that

C—Cy

S 0)y=c(1—-0¢)

cc

(11)

2c—c¢,

It is of interest to apply this equation, for computa-
tion of S..(0) and activity, in the liquid T1-Te alloys in
which there is the liquid associate Tl,Te and a mis-
cibility gap in the Tl-rich region according to the phase
diagram [15,16]. The formula for activity in the region
¢, <c <1 follows from Eqgs. (1) and (11):

(e —¢y)
alc) = e, (12)

For the estimation of activity over the total compo-
sition region we must introduce an additional term
into Eq. (12), which is analytical at ¢ = ¢,, as has been
made in Eq. (8). For detailed reconstruction of the
activity curve it is necessary to take account of its
behavior at small ¢, which is conditioned by the
normalizztion constant y° = %{0), so that

cle — ¢yl

a(c)=y"c(1—¢) + (13)

1—c¢,

The results of calculations of S, (0) and activity of
tellurium from Egs. (11) and (13) for Tl-Te melts are
given in Figs. 7 and 8 and show rather good agreement
with experimental data for §,.(0) [14] and a(c) [16]. In
calculations we used ¢, = 0.33 [16] in Eq. (11); v, was
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Fig. 7. Correlation function S _(0) for liquid TI-Te alloys: O,
calculated from Eq. (11); ——, drawn from experimental data.
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Fig. 8. Activity of tellurium for liquid Tl-Te alloys: ---, calculated
from Eq. (13); ——, drawn from experimental data at 1181 K.

computed to be 0.42 from data of Ref. [16]. It should
be noted that in the Tl-rich region the behavior of the
calculated activity curve seems to predict a phase
separation tendency, which, however, does not co-
incide with activity data at 1811 K [16]. The differ-
ences between calculated and experimental activity
curves may be caused by fluctuation probability scat-
tering, which arises sharply at ¢ =c¢, (Fig. 7). Alter-
natively, in the CSRO concentration region around
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T1,Te, the small S, (0) does not make the agreement
between both branches of the activity curve worse
(Fig. 8).

7. Discussion

The calculation of activity and correlation function
S.(0y demonstrate, in general, the successful attempt
of the application of percolation theory for typical
liquid alloys with strong CSRO, intermediate ordering
and phase separation tendency. All the calculated
concentration dependencies of a(c) and S, (0) reflect
the main features of the experimental data sets;
however, the results for a,, (Fig. 1) and a,, (Fig. 2) are
unsatisfactory. This weak point of the theory is due to
the only single parameter limitation in calculations
(Eq. (2)). This seems to be insufficient even though
that it gives yo = 0, while for real melts this parameter
is non-trivial and serves as a standard point. Since the
adjustable parameter § must be introduced in several
cases to hold the shape of the a(c) curve, the three
values (c,, ¥’ and &) in general provide the correct
results. All these parameters may be determined or
estimated from thermodynamic, structural and phase
equilibrium data.

The successful application of the percolation prob-
lems to liquid alloys allows us to make certain consid-
erations about the structure of metallic melts. Using
the concentration dependence of activity (Figs. 1-3)
one can propose the coherent cluster formation at
¢ >c,, the scaling transformation around ¢, when the
infinite cluster decomposes into finite size blocks, and
a solution of small clusters (associates) at 0 <c¢ <c,.
This hypothesis of cluster formation is in formal
agreement with the idea of microinhomogeneity of
liquid alloys in frames of the well-known TAS model
for the activity [17]. Furthermore, drawing the anal-
ogy with the IAS model, one can choose the corre-
sponding pairs of principal values:

(1) percolation threshold — mean CSRO point;

(2) probability of a cluster formation — activity,
a(c);

(3) blocked atoms fraction— associates fraction,
&c).

Using the notation suited to the IAS model, we may
write the equation (for an arbitrary associate A B,
¢, =alla+ b))

a(c) =c — ¢, éc) (14)

which has been derived by Shklovski and Efros [18] in
terms of percolation theory. Earlier the IAS model
was successfully applied for numerous binary liquid
alloys, included the above studied Ag-Nd [4], Ge-Cu
{11] and Ge-Ni [12], using percolation theory. The
detailed inspections of theoretical activity curves {17]
show that the IAS model could reproduce the ac-
tivities, obtained from percolation theory (Egs. (2), (5)
and (6)), even for very sharp bends, if the IAS model
parameters reach the critical limits.

In this paper we have shown an equivalence be-
tween certain networks with the percolation threshold
and liquid alloy with CSRO for interpreting concen-
tration dependencies of activity and concentration
correlation function. The percolation model, which
does not take into account the electronic structure of
the material, may be used to obtain analytical results
for calculation of thermodynamic functions and for
estimation of the structure of liquid alloys.
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